The Potential Impact of Probiotics on Neurodegenerative Diseases
Main Article Content
Abstract
Commensal microorganisms predominantly reside inside or on the human body.
These organisms are collectively called the microbiome. The human intestinal tract
harbors the most abundant and diverse collection of microbes. Probiotic products or
supplements have been linked to particular health concerns. These products contain
probiotic strains that exhibit beneficial characteristics tailored to address specific
clinical conditions, primarily related to the gastrointestinal tract. Within these, the
dysregulation of gut microbiota may contribute to the occurrence or development
of Alzheimer’s disease and Parkinson’s disease through diverse mechanisms that
are not yet fully understood but are believed to involve modulations in gut microbiome composition, strengthening of gut barrier integrity, and interactions with the
host’s immune system. Although the effectiveness of probiotics can vary depending
on various factors and the process of choosing appropriate probiotic formulations
through diverse strains with optimal effectiveness can be challenging, understanding the fundamental mechanisms and assessing the effectiveness of probiotics have
the potential to provide potential treatment options for neurodegenerative diseases.
Here we aimed to review the possible interaction between probiotics and neurological diseases.
Cite this article as: Zarei G, Norizadeh M, The potential impact of probiotics on
neurodegenerative diseases. Trends Pharm. 1, 12, doi: 10.5152/TrendsPharm.2024.24012.
Article Details
References
1. Jones KC. Update on major neurocognitive disorders. Focus (Am Psychiatr Publ). 2021;19(3):271-281. [CrossRef]
2. Cryan JF, O’Riordan KJ, Sandhu K, Peterson V, Dinan TG. The gut microbiome in neurological disorders. Lancet Neurol. 2020;19(2):179-194. [CrossRef]
3. Goldsteins G, Hakosalo V, Jaronen M, Keuters MH, Lehtonen Š, Koistinaho J. CNS redox homeostasis and dysfunction in neurodegenerative diseases. Antioxidants (Basel). 2022;11(2). [CrossRef]
4. Pini L. Brain network modulation in Alzheimer’s disease: clinical phenotypes and windows of opportunity. Neural Regen Res. 2023;18(1):115-116. [CrossRef]
5. Sittipo P, Choi J, Lee S, Lee YK. The function of gut microbiota in immune-related neurological disorders: a review. J Neuroinflammation. 2022;19(1):154. [CrossRef]
6. Liu L, Wang H, Chen X, Zhang Y, Zhang H, Xie P. Gut microbiota and its metabolites in depression: from pathogenesis to treatment. EBiomedicine. 2023;90:104527. [CrossRef]
7. Yang J, Wu J, Li Y, et al. Gut bacteria formation and influencing factors. FEMS Microbiol Ecol. 2021;97(4). [CrossRef]
8. Moszak M, Szulińska M, Bogdański P. You are what you eat-the relationship between diet, microbiota, and metabolic disorders-A review. Nutrients. 2020;12(4). [CrossRef]
9. Liu Y, Tran DQ, Rhoads JM. Probiotics in disease prevention and treatment. J Clin Pharmacol. 2018;58(suppl 10):S164-S179. [CrossRef]
10. Aghamohammad S, Hafezi A, Rohani M. Probiotics as functional foods: how probiotics can alleviate the symptoms of neurological disabilities. Biomed Pharmacother. 2023;163:114816. [CrossRef]
11. Tiwari P, Dwivedi R, Bansal M, Tripathi M, Dada R. Role of gut microbiota in neurological disorders and its therapeutic significance. J Clin Med. 2023;12(4):1650. [CrossRef]
12. Loh JS, Mak WQ, Tan LKS, et al. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther. 2024;9(1):37. [CrossRef]
13. Bonnechère B, Amin N, van Duijn C. What are the key gut microbiota involved in neurological diseases? A systematic review. Int J Mol Sci. 2022;23(22). [CrossRef]
14. Umbrello G, Esposito S. Microbiota and neurologic diseases: potential effects of probiotics. J Transl Med. 2016;14(1):298. [CrossRef]
15. Lee SHF, Ahmad SR, Lim YC, Zulkipli IN. The use of probiotic therapy in metabolic and neurological diseases. Front Nutr. 2022;9:887019. [CrossRef]
16. Thangaleela S, Sivamaruthi BS, Kesika P, Chaiyasut C. Role of probiotics and diet in the management of neurological diseases and mood states: a review. Microorganisms. 2022;10(11). [CrossRef]
17. Berer K, Mues M, Koutrolos M, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479(7374):538-541. [CrossRef]
18. Miyake S, Kim S, Suda W, et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to Clostridia XIVa and IV clusters. PLoS One. 2015;10(9):e0137429. [CrossRef]
19. Bi M, Liu C, Wang Y, Liu SJ. Therapeutic prospect of new probiotics in neurodegenerative diseases. Microorganisms. 2023;11(6). [CrossRef]
20. Ji HF, Shen L. Probiotics as potential therapeutic options for Alzheimer’s disease. Appl Microbiol Biotechnol. 2021;105(20):7721-7730. [CrossRef]
21. Shi S, Zhang Q, Sang Y, et al. Probiotic Bifidobacterium longum BB68S improves cognitive functions in healthy older adults: A randomized, double-blind, placebo-controlled trial. Nutrients. 2022;15(1):51. [CrossRef]
22. Kip E, Parr-Brownlie LC. Reducing neuroinflammation via therapeutic compounds and lifestyle to prevent or delay progression of Parkinson’s disease. Ageing Res Rev. 2022;78:101618. [CrossRef]
23. Webberley TS, Masetti G, Bevan RJ, et al. The impact of probiotic supplementation on cognitive, pathological and metabolic markers in a transgenic mouse model of Alzheimer’s disease. Front Neurosci. 2022;16:843105. [CrossRef]
24. Murai T, Matsuda S. Therapeutic implications of probiotics in the gut microbe-modulated neuroinflammation and progression of Alzheimer’s disease. Life (Basel). 2023;13(7). [CrossRef]
25. Tan AH, Hor JW, Chong CW, Lim SY. Probiotics for Parkinson’s disease: current evidence and future directions. JGH Open. 2021;5(4):414-419. [CrossRef]
26. Mohammadi G, Dargahi L, Peymani A, et al. The effects of probiotic formulation pretreatment (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) on a lipopolysaccharide rat model. J Am Coll Nutr. 2019;38(3):209-217. [CrossRef]
27. Sun H, Zhao F, Liu Y, et al. Probiotics synergized with conventional regimen in managing Parkinson’s disease. npj Parkinsons Dis. 2022;8(1):62. [CrossRef]
28. Briguglio M, Dell’Osso B, Panzica G, et al. Dietary neurotransmitters: A narrative review on current knowledge. Nutrients. 2018;10(5). [CrossRef]
29. Nobile V, Giardina S, Puoci F. The effect of a probiotic complex on the gut-brain axis: A translational study. Neuropsychobiology. 2022;81(2):116-126. [CrossRef]
30. Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050-16055. [CrossRef]
31. Mousavi R, Mottawea W, Audet MC, Hammami R. Survival and interplay of γ-aminobutyric acid-producing Psychobiotic candidates with the gut microbiota in a continuous model of the human colon. Biology (Basel). 2022;11(9). [CrossRef]
32. Cui S, Gu J, Liu X, et al. Lactulose significantly increased the relative abundance of Bifidobacterium and Blautia in mice feces as revealed by 16S rRNA amplicon sequencing. J Sci Food Agric. 2021;101(13):5721-5729. [CrossRef]
33. Mills S, Yang B, Smith GJ, Stanton C, Ross RP. Efficacy of Bifidobacterium longum alone or in multi-strain probiotic formulations during early life and beyond. Gut Microbes. 2023;15(1):2186098. [CrossRef]
34. Kim H, Kim S, Park SJ, et al. Administration of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI improves cognitive and memory function in the mouse model of Alzheimer’s disease. Front Aging Neurosci. 2021;13:709091. [CrossRef]
35. Labarre A, Guitard E, Tossing G, et al. Fatty acids derived from the probiotic Lacticaseibacillus rhamnosus HA-114 suppress age-dependent neurodegeneration. Commun Biol. 2022;5(1):1340. [CrossRef]
36. Park S, Kang J, Choi S, et al. Cholesterol-lowering effect of Lactobacillus rhamnosus BFE5264 and its influence on the gut microbiome and propionate level in a murine model. PLOS ONE. 2018;13(8):e0203150. [CrossRef]
37. Huang Y, Wang X, Wang J, et al. Lactobacillus plantarum strains as potential probiotic cultures with cholesterol-lowering activity. J Dairy Sci. 2013;96(5):2746-2753. [CrossRef]
38. Webberley TS, Bevan RJ, Kerry-Smith J, et al. Assessment of Lab4P probiotic effects on cognition in 3xTg-AD Alzheimer’s disease model mice and the SH-SY5Y neuronal cell line. Int J Mol Sci. 2023;24(5):4683. [CrossRef]
39. Yang X, Yu D, Xue L, Li H, Du J. Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice. Acta Pharm Sin B. 2020;10(3):475-487. [CrossRef]
40. Sun J, Wang F, Ling Z, et al. Clostridium butyricum attenuates cerebral ischemia/reperfusion injury in diabetic mice via modulation of gut microbiota. Brain Res. 2016;1642:180-188. [CrossRef]
41. Van Pelt KM, Truttmann MC. Caenorhabditis elegans as a model system for studying aging-associated neurodegenerative diseases. Transl Med Aging. 2020;4:60-72. [CrossRef]
42. Chen K, Luan X, Liu Q, et al. Drosophila histone demethylase KDM5 regulates social behavior through immune control and gut microbiota maintenance. Cell Host Microbe. 2019;25(4):537-552.e8. [CrossRef]
43. Perez Visñuk D, Savoy de Giori G, LeBlanc JG, de Moreno de LeBlanc A. Neuroprotective effects associated with immune modulation by selected lactic acid bacteria in a Parkinson’s disease model. Nutrition. 2020;79-80:110995. [CrossRef]
44. Rajilić-Stojanović M, Biagi E, Heilig HGHJ, et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology. 2011;141(5):1792-1801. [CrossRef]
45. Ni J, Huang R, Zhou H, et al. Analysis of the relationship between the degree of dysbiosis in gut microbiota and prognosis at different stages of primary hepatocellular carcinoma. Front Microbiol. 2019;10:1458. [CrossRef]
46. Dahlin M, Prast-Nielsen S. The gut microbiome and epilepsy. EBiomedicine. 2019;44:741-746. [CrossRef]
47. Arulsamy A, Tan QY, Balasubramaniam V, O’Brien TJ, Shaikh MF. Gut microbiota and epilepsy: A systematic review on their relationship and possible therapeutics. ACS Chem Neurosci. 2020;11(21):3488-3498. [CrossRef]
48. Vendrik KEW, Ooijevaar RE, de Jong PRC, et al. Fecal microbiota transplantation in neurological disorders. Front Cell Infect Microbiol. 2020;10:98. [CrossRef]
49. Mejía-Granados DM, Villasana-Salazar B, Lozano-García L, Cavalheiro EA, Striano P. Gut-microbiota-directed strategies to treat epilepsy: clinical and experimental evidence. Seizure. 2021;90:80-92. [CrossRef]
50. Wang C, Zheng C. Using Caenorhabditis elegans to model therapeutic interventions of neurodegenerative diseases targeting microbe-host interactions. Front Pharmacol. 2022;13:875349. [CrossRef]
51. Walker AC, Bhargava R, Bucher M, Brust AS, Czy DM. Identification of proteotoxic and proteoprotective bacteria that non-specifically affect proteins associated with neurodegenerative diseases. bioRxiv. 2023. [CrossRef]
52. Rosario D, Boren J, Uhlen M, et al. Systems biology approaches to understand the Host-Microbiome Interactions in Neurodegenerative Diseases. Front Neurosci. 2020;14:716. [CrossRef]
53. Song X, Zhao Z, Zhao Y, et al. Lactobacillus plantarum DP189 prevents cognitive dysfunction in D-galactose/AlCl3 induced mouse model of Alzheimer’s disease via modulating gut microbiota and PI3K/Akt/GSK-3β signaling pathway. Nutr Neurosci. 2022;25(12):2588-2600. [CrossRef]
54. Davis DJ, Doerr HM, Grzelak AK, et al. Lactobacillus plantarum attenuates anxiety-related behavior and protects against stress-induced dysbiosis in adult zebrafish. Sci Rep. 2016;6:33726. [CrossRef]