Scorpion Venom and Its Different Peptides Aid in Treatment Focusing on Cancer Disease with the Mechanism of Action
Main Article Content
Abstract
Animal venoms, especially those from scorpions, have garnered interest for their potential therapeutic uses. Scorpion venom is a complex mixture of bioactive compounds, including neurotoxins, enzymes, enzyme inhibitors, and peptides. These peptides have shown promise in pharmacological applications due to their high selectivity and relatively safe mechanisms of action. In this review, we focused on cancer, one of the leading causes of death worldwide, and explored the potential of scorpion venom peptides as promising therapeutic agents in cancer treatment. Despite significant advancements in cancer therapy, many cases remain reliant on
palliative care, particularly for treatment-resistant cancer types. Scorpion venom peptides, with their specific and targeted mechanisms of action, exhibit potential as novel anticancer agents. These peptides have demonstrated the ability to selectively
target cancer cells, inhibit tumor proliferation, and modulate immune responses, positioning them as valuable candidates for the development of more effective therapies. Previous studies have highlighted that certain venom-derived peptides can suppress tumor growth and metastasis, underscoring their potential to enhance clinical outcomes. Consequently, scorpion venom offers new perspectives and avenues for developing next-generation cancer treatments.
Cite this article as: Amen, RA, & Abd-Ellatef, GEF. Scorpion venom and its different peptides aid in treatment focusing on cancer
disease with the mechanism of action. Trends Pharm. 2024, 1, 11, doi: 10.5152/TrendsPharm.2024.24011.
Article Details
References
1. Díaz-García A, Varela D. Voltage-gated K+/Na+ channels and scorpion venom toxins in cancer. Front Pharmacol. 2020;11:913. [CrossRef]
2. Holford M, Daly M, King GF, Norton RS. Venoms to the rescue. Science. 2018;361(6405):842-844. [CrossRef]
3. McDermott A. News Feature: Venom back in vogue as a wellspring for drug candidates. Proc Natl Acad Sci U S A. 2020;117(19):10100-10104. [CrossRef]
4. Ortiz E, Gurrola GB, Schwartz EF, Possani LD. Scorpion venom components as potential candidates for drug development. Toxicon. 2015;93:125-135. [CrossRef]
5. Schendel V, Rash LD, Jenner RA, Undheim EAB. The diversity of venom: the importance of behavior and venom system morphology in understanding its ecology and evolution. Toxins. 2019;11(11):666. [CrossRef]
6. JAVED M, HUSSAIN S, KHAN MA, et al. Potential of scorpion venom for the treatment of various diseases. Int J Chem Res. 2022:1-9. [CrossRef]
7. Nasr S, Borges A, Sahyoun C, et al. Scorpion venom as a source of antimicrobial peptides: overview of biomolecule separation, analysis and characterization methods. Antibiotics (Basel). 2023;12(9):1380. [CrossRef]
8. Quintero-Hernández V, Jiménez-Vargas JM, Gurrola GB, Valdivia HH, Possani LD. Scorpion venom components that affect ion-channels function. Toxicon. 2013;76:328-342. [CrossRef]
9. Isbister GK, Bawaskar HS. Scorpion envenomation. N Engl J Med. 2014;371(5):457-463. [CrossRef]
10. Shoukry NM, Salem ML, Teleb WK, Abdel Daim MM, AbdelRahman MA. Antinociceptive, antiinflammatory, and antipyretic effects induced by the venom of Egyptian scorpion Androctonus amoreuxi. J Basic Appl Zool. 2020;81(1):1-9.
11. Pennington MW, Czerwinski A, Norton RS. Peptide therapeutics from venom: current status and potential. Bioorg Med Chem. 2018;26(10):2738-2758. [CrossRef]
12. Ahluwalia S, Shah N. Animal venom for treating breast cancer. Int J Pharm Pharm Sci. 2014;6(9):24-30.
13. Ghosh A, Roy R, Nandi M, Mukhopadhyay A. Scorpion venom–toxins that aid in drug development: a review. Int J Pept Res Ther. 2019;25(1):27-37. [CrossRef]
14. Lorenzo LD. Cancer pain management with a venom of blue scorpion endemic in Cuba, called rhopalurus junceus “Escozul”. Open Cancer J. 2012;5(1):1-2. [CrossRef]
15. D’Suze G, Rosales A, Salazar V, Sevcik C. Apoptogenic peptides from Tityus discrepans scorpion venom acting against the SKBR3 breast cancer cell line. Toxicon. 2010;56(8):1497-1505. [CrossRef]
16. Mishal R, Tahir HM, Zafar K, Arshad M. Anticancerous applications of scorpion venom. Int J Biol Pharm Res. 2013;4:356-360. [CrossRef]
17. Zargan J, Umar S, Sajad M, Naime M, Ali S, Khan HA. Scorpion venom (Odontobuthus doriae) induces apoptosis by depolarization of mitochondria and reduces S-phase population in human breast cancer cells (MCF-7). Toxicol In Vitro. 2011;25(8):1748-1756. [CrossRef]
18. Chaisakul J, Hodgson WC, Kuruppu S, Prasongsook N. Effects of animal venoms and toxins on hallmarks of cancer. J Cancer. 2016;7(11):1571-1578. [CrossRef]
19. Jlassi A, Mekni-Toujani M, Ferchichi A, et al. BotCl, the first chlorotoxin-like peptide inhibiting Newcastle disease virus: the emergence of a new scorpion venom AMPs family. Molecules. 2023;28(11):4355. [CrossRef]
20. Ergen PH, Shorter S, Ntziachristos V, Ovsepian SV. Neurotoxin-derived optical probes for biological and medical imaging. Mol Imaging Biol. 2023;25(5):799-814. [CrossRef]
21. Wiranowska M. Advances in the use of chitosan and chlorotoxin-functionalized chitosan polymers in drug delivery and detection of glioma-A review. Carbohydr Polym Technol Appl. 2024;7:100427. [CrossRef]
22. Sariego J. Breast cancer in the young patient. Am Surg. 2010;76(12):1397-1400. [CrossRef]
23. Seneci L, Mikheyev AS. Sodium channel β subunits—an additional element in animal tetrodotoxin resistance? Int J Mol Sci. 2024;25(3):1478. [CrossRef]
24. McDougall JJ, O’Brien MS. Analgesic potential of voltage-gated sodium channel modulators for the management of pain. Curr Opin Pharmacol. 2024;75:102433. [CrossRef]
25. Chippaux JP. Emerging options for the management of scorpion stings. Drug Des Dev Ther. 2012;6:165-173. [CrossRef]
26. Mendoza-Tobar LL, Clement H, Arenas I, et al. Antimicrobial, toxicological, and antigenic characteristics of three scorpion venoms from Colombia: Centruroides margaritatus, Tityus pachyurus and Tityus n. sp. aff. metuendus. Acta Trop. 2024;252:107134. [CrossRef]
27. Rodríguez de la Vega RCR, Schwartz EF, Possani LD. Mining on scorpion venom biodiversity. Toxicon. 2010;56(7):1155-1161. [CrossRef]
28. Quintero-Hernández V, Ortiz E, Rendón-Anaya M, et al. Scorpion and spider venom peptides: gene cloning and peptide expression. Toxicon. 2011;58(8):644-663. [CrossRef]
29. Almaaytah A, Albalas Q. Scorpion venom peptides with no disulfide bridges: a review. Peptides. 2014;51:35-45. [CrossRef]
30. Huang Y, Huang J, Chen Y. Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell. 2010;1(2):143-152. [CrossRef]
31. Ojeda PG, Wang CK, Craik DJ. Chlorotoxin: structure, activity, and potential uses in cancer therapy. Biopolymers. 2016;106(1):25-36. [CrossRef]
32. Carlier E, Avdonin V, Geib S, et al. Effect of maurotoxin, a four disulfide-bridged toxin from the chactoid scorpion Scorpio maurus, on Shaker K+ channels. J Pept Res. 2000;55(6):419-427. [CrossRef]
33. Candia S, Garcia ML, Latorre R. Mode of action of iberiotoxin, a potent blocker of the large conductance Ca(2+) activated K+ channel. Biophys J. 1992;63(2):583-590. [CrossRef]
34. Garcia-Calvo M, Leonard RJ, Novick J, et al. Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. J Biol Chem. 1993;268(25):18866-18874. [CrossRef]
35. Auguste P, Hugues M, Gravé B, et al. Leiurotoxin I (scyllatoxin), a peptide ligand for Ca2(+)-activated K+ channels. Chemical synthesis, radiolabeling, and receptor characterization. J Biol Chem. 1990;265(8):4753-4759. [CrossRef]
36. Gao B, Zhu S. Mesobuthus venom-derived antimicrobial peptides possess intrinsic multifunctionality and differential potential as drugs. Front Microbiol. 2018;9:320. [CrossRef]
37. Guo X, Ma C, Du Q, et al. Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: evaluation of their antimicrobial and anticancer activities. Biochimie. 2013;95(9):1784-1794. [CrossRef]
38. Hetru C, Letellier L, Oren Z, Hoffmann JA, Shai Y. Androctonin, a hydrophilic disulphide-bridged non-haemolytic antimicrobial peptide: a plausible mode of action. Biochem J. 2000;345(3):653-664. [CrossRef]
39. Tripathy A, Resch W, Xu LE, Valdivia HH, Meissner G. Imperatoxin A induces subconductance states in Ca2+ release channels (ryanodine receptors) of cardiac and skeletal muscle. J Gen Physiol. 1998;111(5):679-690. [CrossRef]
40. Freire MCLC, Silva de Menezes YA, Ferreira Ferraz MV, et al. Molecular basis of Tityus stigmurus alpha toxin and potassium channel kV1.2 interactions. J Mol Graph Model. 2019;87:197-203. [CrossRef]
41. Elrayess RA, Mohallal ME, El-Shahat YM, et al. Cytotoxic effects of Smp24 and Smp43 scorpion venom antimicrobial peptides on tumour and non-tumour cell lines. Int J Pept Res Ther. 2020;26(3):1409-1415. [CrossRef]
42. Gaspar D, Veiga AS, Castanho MARB. From antimicrobial to anticancer peptides. A review. Front Microbiol. 2013;4:294. [CrossRef]
43. Heinen TE, da Veiga ABG. Arthropod venoms and cancer. Toxicon. 2011;57(4):497-511. [CrossRef]
44. Rjeibi I, Mabrouk K, Mosrati H, et al. Purification, synthesis and characterization of AaCtx, the first chlorotoxin-like peptide from Androctonus australis scorpion venom. Peptides. 2011;32(4):656-663. [CrossRef]
45. Lia A, Di Spiezio A, Vitalini L, Tore M, Puja G, Losi G. Ion channels and ionotropic receptors in astrocytes: physiological functions and alterations in Alzheimer’s disease and glioblastoma. Life (Basel). 2023;13(10):2038. [CrossRef]
46. Boltman T, Meyer M, Ekpo O. Diagnostic and therapeutic approaches for glioblastoma and neuroblastoma cancers using chlorotoxin nanoparticles. Cancers. 2023;15(13):3388. [CrossRef]
47. Lui VCH, Lung SSS, Pu JKS, Hung KN, Leung GKK. Invasion of human glioma cells is regulated by multiple chloride channels including ClC-3. Anticancer Res. 2010;30(11):4515-4524. [CrossRef]
48. Lin S, Li K, Qi L. Cancer stem cells in brain tumors: from origin to clinical implications. MedComm (2020). 2023;4(4):e341. [CrossRef]
49. Qin C, He B, Dai W, et al. Inhibition of metastatic tumor growth and metastasis via targeting metastatic breast cancer by chlorotoxin-modified liposomes. Mol Pharm. 2014;11(10):3233-3241. [CrossRef]
50. El-Ghlban S, Kasai T, Shigehiro T, et al. Chlorotoxin-Fc fusion inhibits release of MMP-2 from pancreatic cancer cells. BioMed Res Int. 2014;2014:152659. [CrossRef]
51. Xiang Y, Liang L, Wang X, Wang J, Zhang X, Zhang Q. Chloride channel-mediated brain glioma targeting of chlorotoxin-modified doxorubicine-loaded liposomes. J Control Release. 2011;152(3):402-410. [CrossRef]
52. Villela A, S. M., Kraïem-Ghezal H, Bouhaouala-Zahar B, Bideaux C, Aceves Lara CA, Fillaudeau L. Production of recombinant scorpion antivenoms in E. coli: current state and perspectives. Appl Microbiol Biotechnol. 2023:1-8. [CrossRef]
53. Zhao Y, Cai X, Ye T, et al. Analgesic-antitumor peptide inhibits proliferation and migration of SHG-44 human malignant glioma cells. J Cell Biochem. 2011;112(9):2424-2434. [CrossRef]
54. Shao JH, Cui Y, Zhao MY, Wu CF, Liu YF, Zhang JH. Purification, characterization, and bioactivity of a new analgesic-antitumor peptide from Chinese scorpion Buthus martensii Karsch. Peptides. 2014;53:89-96. [CrossRef]
55. Jang SH, Choi SY, Ryu PD, Lee SY. Anti-proliferative effect of Kv1.3 blockers in A549 human lung adenocarcinoma in vitro and in vivo. Eur J Pharmacol. 2011;651(1-3):26-32. [CrossRef]
56. Ma T, Jin L, Bai S, et al. Loss of feedback regulation between FAM3B and androgen receptor driving prostate cancer progression. J Natl Cancer Inst. 2024 March 7;116(3):421-433. [CrossRef]
57. Elias AF, Lin BC, Piggott BJ. Ion channels in gliomas—from molecular basis to treatment. Int J Mol Sci. 2023;24(3):2530. [CrossRef]
58. Rezaei A, Asgari S, Komijani S, et al. Discovery of Leptulipin, a new anticancer protein from the Iranian scorpion, Hemiscorpius lepturus. Molecules. 2022;27(7):2056. [CrossRef]
59. Gupta SD, Gomes A, Debnath A, Saha A, Gomes A. Apoptosis induction in human leukemic cells by a novel protein Bengalin, isolated from Indian black scorpion venom: through mitochondrial pathway and inhibition of heat shock proteins. Chem Biol Interact. 2010;183(2):293-303. [CrossRef]
60. Das Gupta SD, Halder B, Gomes A, Gomes A. Bengalin initiates autophagic cell death through ERK–MAPK pathway following suppression of apoptosis in human leukemic U937 cells. Life Sci. 2013;93(7):271-276. [CrossRef]
61. Haldar S, Das Gupta SD, Gomes A, et al. A high molecular weight protein Bengalin from the Indian black scorpion (Heterometrus bengalensis CL Koch) venom having antiosteoporosis activity in female albino rats. Toxicon. 2010;55(2-3):455-461. [CrossRef]
62. Xia Z, He D, Wu Y, Kwok HF, Cao Z. Scorpion venom peptides: molecular diversity, structural characteristics, and therapeutic use from channelopathies to viral infections and cancers. Pharmacol Res. 2023;197:106978. [CrossRef]
63. Salabi F, Jafari H. New insights about scorpion venom hyaluronidase; isoforms, expression and phylogeny. Toxin Rev. 2023;42(1):69-84. [CrossRef]
64. Oliveira-Ferrer L, Schmalfeldt B, Dietl J, Bartmann C, Schumacher U, Stürken C. Ovarian cancer-cell pericellular hyaluronan deposition negatively impacts prognosis of ovarian cancer patients. Biomedicines. 2022;10(11):2944. [CrossRef]
65. Haji-Ghassemi O, Chen YS, Woll K, et al. Cryo-EM analysis of scorpion toxin binding to ryanodine Receptors reveals subconductance that is abolished by PKA phosphorylation. Sci Adv. 2023;9(21):eadf4936. [CrossRef]
66. Gori A, Lodigiani G, Colombarolli SG, Bergamaschi G, Vitali A. Cell penetrating peptides: classification, mechanisms, methods of study, and applications. ChemMedChem. 2023;18(17):e202300236. [CrossRef]
67. Perret P, Ahmadi M, Riou L, et al. Biodistribution, stability, and blood distribution of the cell penetrating peptide maurocalcine in mice. Int J Mol Sci. 2015;16(11):27730-27740. [CrossRef]
68. Tisseyre C, Bahembera E, Dardevet L, Sabatier JM, Ronjat M, De Waard M. Cell penetration properties of a highly efficient mini maurocalcine Peptide. Pharmaceuticals (Basel). 2013;6(3):320-339. [CrossRef]
69. Stockmann R, Ythier E. Scorpions of the World. Paris, France: NAP Editions; 2010.
70. González-Santillán E, Possani LD. North American scorpion species of public health importance with a reappraisal of historical epidemiology. Acta Trop. 2018;187:264-274. [CrossRef]
71. Mrugala MM, Adair JE, Kiem HP. Outside the box—novel therapeutic strategies for glioblastoma. Cancer J. 2012;18(1):51-58. [CrossRef]
72. Khusro A, Aarti C, Barbabosa-Pliego A, Rivas-Cáceres RR, Cipriano-Salazar M. Venom as therapeutic weapon to combat dreadful diseases of 21st century: A systematic review on cancer, TB, and HIV/AIDS. Microb Pathog. 2018;125:96-107. [CrossRef]
73. Escalona MP, Batista CVF, Cassulini RR, Rios MS, Coronas FI, Possani LD. A proteomic analysis of the early secondary molecular effects caused by Cn2 scorpion toxin on neuroblastoma cells. J Proteomics. 2014;111:212-223. [CrossRef]
74. Barker BS, Young GT, Soubrane CH, Stephens GJ, Stevens EB, Patel MK. Conn’s Translational Neuroscience; 2017.
75. Suppiramaniam V, Abdel-Rahman EA, Buabeid MA, Parameshwaran K. Ion Channels. Comprehensive Toxicology; vol 11. Elsevier: Amsterdam, The Netherlands; 2010:129-171.
76. Turner KL, Sontheimer H. Cl− and K+ channels and their role in primary brain tumour biology. Phil Trans R Soc B. 2014;369(1638):20130095. [CrossRef]
77. Leanza L, Biasutto L, Managò A, Gulbins E, Zoratti M, Szabò I. Intracellular ion channels and cancer. Front Physiol. 2013;4:227. [CrossRef]
78. Lang F, Stournaras C. Ion channels in cancer: future perspectives and clinical potential. Philos Trans R Soc Lond B Biol Sci. 2014;369(1638):20130108. [CrossRef]
79. Tang S, Wang X, Shen Q, et al. Mitochondrial Ca2+ uniporter is critical for store-operated Ca2+ entry-dependent breast cancer cell migration. Biochem Biophys Res Commun. 2015;458(1):186-193. [CrossRef]
80. Peruzzo R, Biasutto L, Szabò I, Leanza L. Impact of intracellular ion channels on cancer development and progression. Eur Biophys J. 2016;45(7):685-707. [CrossRef]
81. Erzurumlu Y, Dogan HK, Catakli D. New mode of action of curcumin on prostate cancer cells: modulation of endoplasmic reticulum-associated degradation mechanism and estrogenic signaling. J Biochem Mol Toxicol. 2024;38(1):e23636. [CrossRef]
82. Kale VP, Amin SG, Pandey MK. Targeting ion channels for cancer therapy by repurposing the approved drugs. Biochim Biophys Acta. 2015;1848(10 Pt B):2747-2755. [CrossRef]
83. Stroud MR, Hansen SJ, Olson JM. In vivo bio-imaging using chlorotoxin-based conjugates. Curr Pharm Des. 2011;17(38):4362-4371. [CrossRef]
84. Al-Asmari AK, Islam M, Al-Zahrani AM. In vitro analysis of the anticancer properties of scorpion venom in colorectal and breast cancer cell lines. Oncol Lett. 2016;11(2):1256-1262. [CrossRef]
85. Wang Z, Fu WH, Lu XY, Cai GX. Effects of Buthus martensii karsch venom on cell proliferation and cytotoxicity in HeLa cells. Adv Mater Res. 2012;345:393-398. [CrossRef]
86. Rapôso C. Scorpion and spider venoms in cancer treatment: state of the art, challenges, and perspectives. J Clin Transl Res. 2017;3(2):233-249. [CrossRef]
87. McArthur K, Kile BT. Apoptotic caspases: multiple or mistaken identities? Trends Cell Biol. 2018;28(6):475-493. [CrossRef]
88. Olvera F, Rosales A, Olvera A, et al. An efficient approach to clone and express active Neopladine 2, an anticancer peptide from Tityus discrepans scorpion venom. Process Biochem. 2016;51(5):624-631. [CrossRef]
89. Abbastabar M, Kheyrollah M, Azizian K, et al. Multiple functions of p27 in cell cycle, apoptosis, epigenetic modification and transcriptional regulation for the control of cell growth: A double-edged sword protein. DNA Repair. 2018;69:63-72. [CrossRef]
90. Cohen-Inbar O, Zaaroor M. Glioblastoma multiforme targeted therapy: the chlorotoxin story. J Clin Neurosci. 2016;33:52-58. [CrossRef]
91. Wang H, Gu W, Xiao N, Ye L, Xu Q. Chlorotoxin-conjugated graphene oxide for targeted delivery of an anticancer drug. Int J Nanomedicine. 2014;9:1433-1442. [CrossRef]
92. Ma J, Hu Y, Guo M, Huang Z, Li W, Wu Y. hERG potassium channel blockage by scorpion toxin BmKKx2 enhances erythroid differentiation of human leukemia cells K562. PLoS One. 2013;8(12):e84903. [CrossRef]
93. Song X, Zhang G, Sun A, et al. Scorpion venom component III inhibits cell proliferation by modulating NF-κB activation in human leukemia cells. Exp Ther Med. 2012;4(1):146-150. [CrossRef]
94. González JA, Vallejo JR. The scorpion in Spanish folk medicine: a review of traditional remedies for stings and its use as a therapeutic resource. J Ethnopharmacol. 2013;146(1):62-74. [CrossRef]
95. Arpornsuwan T, Sriwai W, Jaresitthikunchai J, Phaonakrop N, Sritanaudomchai H, Roytrakul S. Anticancer activities of antimicrobial BmKn2 peptides against oral and colon cancer cells. Int J Pept Res Ther. 2014;20(4):501-509. [CrossRef]