Research Articles

Vol. 2 (2025): Trends in Pharmacy

Synthesis and Characterization of Oleic Acid-Coated Calcium Phosphate Nanoparticles for Gene Delivery Applications

Main Article Content

Meryem Akkurt Yıldırım

Abstract

Background: Efficient gene delivery remains a major challenge in gene therapy, necessitating the development of biocompatible and effective carrier systems. This study aimed to synthesize and evaluate oleic acid-modified calcium phosphate (OA-CaP) nanoparticles for their potential as a non-viral gene delivery vector.


Methods: Oleic acid-modified calcium phosphate nanoparticles were synthesized and characterized using dynamic light scattering (DLS), zeta potential analysis, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). Cytotoxicity was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and transfection efficiency was evaluated in L929 cells using fluorescence microscopy. Phase-contrast microscopy was used to observe cell morphology and proliferation.


Results: Oleic acid-modified calcium phosphate nanoparticles exhibited a smaller size (193.1 ± 12.7 nm) and a higher surface charge (+22.6 ± 2.7 mV) compared to unmodified CaP, resulting in improved colloidal stability and cellular interactions. Cytotoxicity analysis indicated high cell viability at lower concentrations, while a dose-dependent decrease in viability was observed at higher concentrations. Transfection studies demonstrated significantly higher gene expression in OA-CaP/pDNA-transfected cells compared to naked pDNA. Transfection efficiencies increased from 22.24% ± 20.13% at 24 hours to 72.43% ± 36.57% at 72 hours. Additionally, phase-contrast microscopy confirmed maintained cell morphology and enhanced proliferation.


Conclusion: Oleic acid-modified calcium phosphate nanoparticles exhibit high transfection efficiency and minimal cytotoxicity at optimized concentrations, highlighting their potential as a promising gene delivery system. Future studies should focus on in vivo evaluations to further establish their therapeutic applicability in gene therapy.


Cite this article as: Akkurt Yıldırım, M. Synthesis and characterization of oleic acid-coated calcium phosphate nanoparticles for gene delivery applications. Trends in Pharmacy, 2025, 2, 0002, doi: 10.5152/TrendsPharm.2025.25002.

Article Details

References

1. Manohar SK, Gowrav MP, Gangadharappa HV. Materials for gene delivery systems. In: Sheikh FA, Majeed S, Beigh MA, eds. Interaction of Nanomaterials With Living Cells. Berlin: Springer; 2023:411-437. [CrossRef]

2. Kamimura K, Suda T, Zhang G, Liu D. Advances in gene delivery systems. Pharmaceut Med. 2011;25(5):293-306. [CrossRef]

3. Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res. 2012;1:27. [CrossRef]

4. Xie L, Han Y, Liu Y, et al. Viral vector-based cancer treatment and current clinical applications. Comm Oncol. 2023;2(4):e55. [CrossRef]

5. Ramamoorth M, Narvekar A. Non viral vectors in gene therapy—an overview. J Clin Diagn Res. 2015;9(1):GE01-GE06. [CrossRef]

6. Sayed N, Allawadhi P, Khurana A, et al. Gene therapy: comprehensive overview and therapeutic applications. Life Sci. 2022;294:120375. [CrossRef]

7. Sokolova V, Epple M. Biological and medical applications of calcium phosphate nanoparticles. Chemistry. 2021;27(27):7471-7488. [CrossRef]

8. Epple M, Ganesan K, Heumann R, et al. Application of calcium phosphate nanoparticles in biomedicine. J Mater Chem. 2010;20(1):18-23. [CrossRef]

9. Maitra A. Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy. Expert Rev Mol Diagn. 2005;5(6):893-905. [CrossRef]

10. Das A, Ghosh S, Ringu T, Pramanik N. A focus on biomaterials based on calcium phosphate nanoparticles: an indispensable tool for emerging biomedical applications. BioNanoScience. 2023;13(2):795-818. [CrossRef]

11. Santa-María C, López-Enríquez S, Montserrat-de la Paz S, et al. Update on anti-inflammatory molecular mechanisms induced by oleic acid. Nutrients. 2023;15(1):224. [CrossRef]

12. Ong HT, Suppiah DD, Julkapli NM. Fatty acid coated iron oxide nanoparticle: effect on stability, particle size and magnetic properties. Colloids Surf A Physicochem Eng Asp. 2020;606:125371.

13. Liu T, Tang A, Zhang G, et al. Calcium phosphate nanoparticles as a novel nonviral vector for efficient transfection of DNA in cancer gene therapy. Cancer Biother Radiopharm. 2005;20(2):141-149. [CrossRef]

14. Dolai J, Mandal K, Jana NR. Nanoparticle size effects in biomedical applications. ACS Appl Nano Mater. 2021;4(7):6471-6496. [CrossRef]

15. Lara-Ochoa S, Ortega-Lara W, Guerrero-Beltrán CE. Hydroxyapatite nanoparticles in drug delivery: physicochemistry and applications. Pharmaceutics. 2021;13(10):1642. [CrossRef]

16. Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology. 2022;20(1):262. [CrossRef]

17. Kavasi RM, Coelho CC, Platania V, Quadros PA, Chatzinikolaidou M. In vitro biocompatibility assessment of nanohydroxyapatite. Nanomaterials (Basel). 2021;11(5):1152. [CrossRef]

18. Yildirim MA, Varli HS, Türkoğlu N. The transfection efficiency of newly developed calcium phosphate nanoparticles in reprogramming of fibroblast cells. J Nanopart Res. 2024;26(7):170. [CrossRef]

19. Varli HS, Alkan F, Demirbilek M, Türkoğlu N. A virus-free vector for the transfection of somatic cells to obtain IPSC. J Nanopart Res. 2019;21(11):1-11. [CrossRef]

20. Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57. [CrossRef]

21. Behzadi S, Serpooshan V, Tao W, et al. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev. 2017;46(14):4218-4244. [CrossRef]

22. Li J, Yang Y, Huang L. Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor. J Control Release. 2012;158(1):108-114. [CrossRef]

23. Sapino S, Chindamo G, Chirio D, et al. Calcium phosphate-coated lipid nanoparticles as a potential tool in bone diseases therapy. Nanomaterials (Basel). 2021;11(11):2983. [CrossRef]

24. Morejón L, Delgado JA, Antunes Ribeiro A, et al. Development, characterization and in vitro biological properties of scaffolds fabricated from calcium phosphate nanoparticles. Int J Mol Sci. 2019;20(7):1790. [CrossRef]

25. Mourdikoudis S, Menelaou M, Fiuza-Maneiro N, et al. Oleic acid/oleylamine ligand pair: a versatile combination in the synthesis of colloidal nanoparticles. Nanoscale Horiz. 2022;7(9):941-1015. [CrossRef]

26. Khalifehzadeh R, Arami H. Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv Colloid Interface Sci. 2020;279:102157. [CrossRef]

27. Bhaskaran S, Francis J, Ann Maria PW, Malini KA, Veena Gopalan E. A comparative study of structural properties of oleic acid coated metal nanoparticles (Co, Ni, Fe) by co-precipitation method. Mater Today Proc. 2023. [CrossRef]

28. Urian YA, Atoche-Medrano JJ, Quispe LT, Félix LL, Coaquira JAH. 3O4 nanoparticlesStudy of the surface properties and particle-particle interactions in oleic acid-coated Fe. J Magn Magn Mater. 2021;525:167686. [CrossRef]

29. Masouleh MP, Hosseini V, Pourhaghgouy M, Bakht MK. `osphate nanoparticles cytocompatibility versus cytotoxicity: a serendipitous paradox. Curr Pharm Des. 2017;23(20):2930-2951. [CrossRef]

30. Peetsch A, Greulich C, Braun D, et al. Silver-doped calcium phosphate nanoparticles: synthesis, characterization, and toxic effects toward mammalian and prokaryotic cells. Colloids Surf B Biointerfaces. 2013;102:724-729. [CrossRef]

31. Sokolova VV, Radtke I, Heumann R, Epple M. Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles. Biomaterials. 2006;27(16):3147-3153. [CrossRef]

32. Cao X, Deng W, Wei Y, et al. Encapsulation of plasmid DNA in calcium phosphate nanoparticles: stem cell uptake and gene transfer efficiency. Int J Nanomedicine. 2011;6:3335-3349. [CrossRef]

33. Welzel T, Radtke I, Meyer-Zaika W, Heumann R, Epple M. Transfection of cells with custom-made calcium phosphate nanoparticles coated with DNA. J Mater Chem. 2004;14(14):2213-2217. [CrossRef]

34. Chernousova S, Epple M. Live-cell imaging to compare the transfection and gene silencing efficiency of calcium phosphate nanoparticles and a liposomal transfection agent. Gene Ther. 2017;24(5):282-289. [CrossRef]

35. Sokolova V, Rojas-Sánchez L, Białas N, Schulze N, Epple M. Calcium phosphate nanoparticle-mediated transfection in 2D and 3D mono- and co-culture cell models. Acta Biomater. 2019;84:391-401. [CrossRef]