Therapeutic Potential of Cannabis Plant in Diabetes
Main Article Content
Abstract
Abstract: Diabetes mellitus (DM) is a metabolic disorder of the endocrine system that poses a serious threat to human health. Although many chemical substances are available for the prevention and treatment of DM and its complications, an optimal treatment for diabetes is not yet available. As an alternative to these synthetic substances, plants are widely used in various traditional medicine systems for the prevention of diabetes. Cannabis sativa L., a member of the Cannabaceae family, is one of the plants with very ancient medicinal use. More than 100 phytocannabinoids have been identified in C. sativa, most notably Δ9-tetrahydrocannabinol and cannabidiol. In addition to cannabinoids, cannabis also contains terpenoids and flavonoids. Various studies have shown that these compounds have many therapeutic effects such as antioxidant, analgesic, immunomodulatory, and anticonvulsant. This review provides an overview of the therapeutic effects of the cannabis plant and its constituents on diabetes and its complications.
Cite this article as: Yazıcı Coşkun ZM & Sezekler I. Therapeutic potential of cannabis
plant in diabetes. Trends in Pharmacy, 2025, 2, 0005, doi: 10.5152/ TrendsPharm.2025.25005.
Article Details
References
1. World Health Organization. Available at: https://www.who.int.
Accessed February 25, 2025.
2. International Diabetes Federation. Available at: https://diabetesatlas.org. Accessed February 25, 2025.
3. Młynarska E, Czarnik W, Dzieża N, et al. Type 2 diabetes mellitus: new pathogenetic mechanisms, treatment and the most
important complications. Int J Mol Sci. 2025;26(3):1094.
[CrossRef]
4. Farhadnejad H, Saber N, Neshatbini Tehrani A, et al. Herbal
products as complementary or alternative medicine for the management of hyperglycemia and dyslipidemia in patients
with type 2 diabetes: current evidence based on findings of
interventional studies. J Nutr Metab. 2024;2024:8300428.
[CrossRef]
5. Ștefănescu R, Ősz BE, Pintea A, et al. Fennel essential oil as
a complementary therapy in the management of diabetes.
Pharmaceutics. 2023;15(12):2657. [CrossRef]
6. Pain S. A potted history. Nature. 2015;525(7570):S10-S11.
[CrossRef]
7. Zuardi AW. History of cannabis as a medicine: a review. Braz
J Psychiatry. 2006;28(2):153-157. [CrossRef]
8. Azizoddin DR, Cohn AM, Ulahannan SV, et al. Cannabis use
among adults undergoing cancer treatment. Cancer.
2023;129(21):3498-3508. [CrossRef]
9. Yazici ZMC, Bilge B, Bolkent S. Anti-inflammatory potential
of delta-9-tetrahydrocannabinol in hyperinsulinemia: an
experimental study. Mol Biol Rep. 2022;49(12):11891-11899.
[CrossRef]
10. Potter DJ. The Propagation, Characterisation and Optimisation of Cannabis sativa L. as a Phytopharmaceutical. King’s
College, London; 2009.
11. Gloss D. An overview of products and bias in research. Neurotherapeutics. 2015;12(4):731-734. [CrossRef]
12. United Nations Office on Drugs and Crime. Available at:
https://www.unodc.org. Accessed March 15, 2025.
13. Erkelens JL, Hazenkamp A. That which we call Indica, by any
other name would smell as sweet. Cannabinoids. 2014;9:9-15.
14. Andre CM, Hausman JF, Guerriero G. Cannabis sativa: the
plant of the thousand and one molecules. Front Plant Sci.
2016;7:19. [CrossRef]
15. Taura F, Sirikantaramas S, Shoyama Y, Yoshikai K, Shoyama Y,
Morimoto S. Cannabidiolic-acid synthase, the chemotypedetermining enzyme in the fiber-type Cannabis sativa. FEBS
Lett. 2007;581(16):2929-2934. [CrossRef]
16. Brenneisen R. Chemistry and analysis of phytocannabinoids
and other cannabis constituents. In: ElSohly MA, ed. Marijuana and the Cannabinoids. New York: Humana Press;
2007:17-49. [CrossRef]
17. Lin YF. The endocannabinoids and potassium channels-An
updated narrative. In: Patel VB, Preedy VR, Martin CR, eds.
Neurobiology and Physiology of the Endocannabinoid System. Academis Press; 2023:107-121. [CrossRef]
18. Ross JA, Riccardelli W, Levy S. The confusing terminology of
"Medical cannabis" and cannabinoid products. J Addict Med.
2025. [CrossRef]
19. Maglaviceanu A, Peer M, Rockel J, et al. The state of synthetic
cannabinoid medications for the treatment of pain. CNS
Drugs. 2024;38(8):597-612. [CrossRef]
20. Rock EM, Parker LA. Constituents of Cannabis sativa. Adv
Exp Med Biol. 2021;1264:1-13. [CrossRef]
21. Filipiuc LE, Ababei DC, Alexa-Stratulat T, et al. Major phytocannabinoids and their related compounds: should we only
search for drugs that act on cannabinoid receptors? Pharmaceutics. 2021;13(11):1823. [CrossRef]
22. Yadav SPS, Kafle M, Ghimire NP, Shah NK, Dahal P, Pokhrel S.
An overview of phytochemical constituents and pharmacological implications of Cannabis sativa L. J Herb Med.
2023;42:100798. [CrossRef]
23. Millán-Guerrero RO, Isais-Millán S. Cannabis and the exocannabinoid and endocannabinoid systems. Their use and controversies. Gac Med Mex. 2019;155(5):471-474. [CrossRef]
24. Aloisio Caruso E, De Nunzio V, Tutino V, Notarnicola M. The
endocannabinoid system: implications in gastrointestinal
physiology and pathology. Int J Mol Sci. 2025;26(3):1306.
[CrossRef]
25. Aoki J, Isokawa M. Understanding cellular, molecular, and
functional specificity, heterogeneity, and diversity of the
endocannabinoid system. Cells. 2024;13(12):1049. [CrossRef]
26. Fonseca BM, Teixeira NA, Almada M, Taylor AH, Konje JC,
Correia-da-Silva G. Modulation of the novel cannabinoid
receptor - GPR55 - during rat fetoplacental development.
Placenta. 2011;32(6):462-469. [CrossRef]
27. Devane WA, Hanus L, Breuer A, et al. Isolation and structure
of a brain constituent that binds to the cannabinoid receptor.
Science. 1992;258(5090):1946-1949. [CrossRef]
28. Mechoulam R, Ben-Shabat S, Hanus L, et al. Identification of
an endogenous 2-monoglyceride, present in canine gut, that
binds to cannabinoid receptors. Biochem Pharmacol.
1995;50(1):83-90. [CrossRef]
29. Lu Y, Anderson HD. Cannabinoid signaling in health and disease. Can J Physiol Pharmacol. 2017;95(4):311-327. [CrossRef]
30. Pertwee RG. Elevating endocannabinoid levels: pharmacological strategies and potential therapeutic applications. Proc
Nutr Soc. 2014;73(1):96-105. [CrossRef]
31. Basavarajappa BS. Critical enzymes involved in endocannabinoid metabolism. Protein Pept Lett. 2007;14(3):237-246.
[CrossRef]
32. Brunetti L, Carrieri A, Piemontese L, Tortorella P, Loiodice F,
Laghezza A. Beyond the canonical endocannabinoid system.
A screening of PPAR ligands as FAAH inhibitors. Int J Mol
Sci. 2020;21(19):7026. [CrossRef]
33. Tsuboi K, Uyama T, Okamoto Y, Ueda N. N-acylethanolamines:
biological activities and metabolismEndocannabinoids and
related . Inflamm Regen. 2018;38:28. [CrossRef]
34. Kim Y, Kim W, Kim SH, et al. Cannabis sativa) root extracts
against insulin-deficient diabetes mellitus in miceProtective
effects of hemp (. Molecules. 2023;28(9):3814. [CrossRef]
35. Zhang J, Lin C, Jin S, et al. The pharmacology and therapeutic
role of cannabidiol in diabetes. Exploration (Beijing).
2023;3(5):20230047. [CrossRef]
36. Smeriglio A, Giofrè SV, Galati EM, et al. Inhibition of aldose
reductase activity by Cannabis sativa chemotypes extracts
with high content of cannabidiol or cannabigerol. Fitoterapia.
2018;127:101-108. [CrossRef]
37. Gaddy A, Elrggal M, Madariaga H, Kelly A, Lerma E, Colbert GB. Diabetic kidney disease. Dis Mon. 2025;71(4):101848.
[CrossRef]
38. Jenkin KA, McAinch AJ, Zhang Y, Kelly DJ, Hryciw DH. Elevated cannabinoid receptor 1 and G protein-coupled receptor
55 expression in proximal tubule cells and whole kidney
exposed to diabetic conditions. Clin Exp Pharmacol Physiol.
2015;42(3):256-262. [CrossRef]
39. Hryciw DH, McAinch AJ. Cannabinoid receptors in the kidney. Curr Opin Nephrol Hypertens. 2016;25(5):459-464.
[CrossRef]
40. Barutta F, Mastrocola R, Bellini S, Bruno G, Gruden G. Cannabinoid receptors in diabetic kidney disease. Curr Diab Rep.
2018;18(2):9. [CrossRef]
41. Bylan D, Khalil A, Shebaby W, et al. Lebanese cannabis oil
extract protected against folic acid-induced kidney fibrosis
in rats. PLoS One. 2024;19(12):e0311790. [CrossRef]
42. Yanar K, Coskun ZM, Beydogan AB, Aydin S, Bolkent S. The
effects of delta-9-tetrahydrocannabinol on Krüppel-like factor-4 expression, redox homeostasis, and inflammation in the
kidney of diabetic rat. J Cell Biochem. 2019;120(9):16219-
16228. [CrossRef]43. Carmona-Hidalgo B, García-Martín A, Muñoz E, GonzálezMariscal I. Detrimental effect of cannabidiol on the early
onset of diabetic nephropathy in male mice. Pharmaceuticals
(Basel). 2021;14(9):863. [CrossRef]
44. Seo H, Park SJ, Song M. Diabetic retinopathy (DR): mechanisms, current therapies, and emerging strategies. Cells.
2025;14(5):376. [CrossRef]
45. Singh R, Walia A, Kaur J, Kumar P, Verma I, Rani N. Diabetic
retinopathy - pathophysiology to treatment: a review. Curr
Diabetes Rev. 2025;21(3):58-67. [CrossRef]
46. El-Remessy AB, Al-Shabrawey M, Khalifa Y, Tsai NT, Caldwell RB, Liou GI. Neuroprotective and blood-retinal barrierpreserving effects of cannabidiol in experimental diabetes.
Am J Pathol. 2006;168(1):235-244. [CrossRef]
47. El-Remessy AB, Khalil IE, Matragoon S, et al. Neuroprotective
effect of(-)∆9-tetrahydrocannabinol and cannabidiol in
n-methyl-d-aspartate-ınduced retinal neurotoxicity:
ınvolvement of peroxynitrite. Am J Pathol. 2003;163(5):1997-
2008. [CrossRef]
48. Saraiva SM, Martín-Banderas L, Durán-Lobato M. Cannabinoid-based ocular therapies and formulations. Pharmaceutics. 2023;15(4):1077. [CrossRef]
49. Peng C, Zhang Y, Lang X, Zhang Y. Role of mitochondrial
metabolic disorder and immune infiltration in diabetic cardiomyopathy: new insights from bioinformatics analysis. J Transl
Med. 2023;21(1):66. [CrossRef]
50. Peng ML, Fu Y, Wu CW, Zhang Y, Ren H, Zhou SS. Signaling
pathways related to oxidative stress in diabetic cardiomyopathy. Front Endocrinol (Lausanne). 2022;13:907757.
[CrossRef]
51. Rajesh M, Mukhopadhyay P, Bátkai S, et al. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and
inflammatory and cell death signaling pathways in diabetic
cardiomyopathy. J Am Coll Cardiol. 2010;56(25):2115-2125.
[CrossRef]
52. Vella RK, Jackson DJ, Fenning AS. 9-tetrahydrocannabinol
prevents cardiovascular dysfunction in STZ-diabetic WistarKyoto ratsΔ. BioMed Res Int. 2017;2017:7974149. [CrossRef]
53. Strand N, Anderson MA, Attanti S, et al. Diabetic neuropathy:
pathophysiology review. Curr Pain Headache Rep.
2024;28(6):481-487. [CrossRef]
54. Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019;5(1):42. [CrossRef]
55. Hosseini A, Abdollahi M. Diabetic neuropathy and oxidative
stress: therapeutic perspectives. Oxid Med Cell Longev.
2013;2013:168039. [CrossRef]
56. Comelli F, Bettoni I, Colleoni M, Giagnoni G, Costa B. Beneficial effects of a Cannabis sativa extract treatment on diabetes-induced neuropathy and oxidative stress. Phytother Res.
2009;23(12):1678-1684. [CrossRef]
57. Selvarajah D, Gandhi R, Emery CJ, Tesfaye S. Randomized
placebo-controlled double-blind clinical trial of cannabisbased medicinal product (Sativex) in painful diabetic neuropathy: depression is a major confounding factor. Diabetes
Care. 2010;33(1):128-130. [CrossRef]
58. Wallace MS, Marcotte TD, Umlauf A, Gouaux B, Atkinson JH.
Efficacy of inhaled cannabis on painful diabetic neuropathy.
J Pain. 2015;16(7):616-627. [CrossRef]
59. Seevathee K, Kessomboon P, Manimmanakorn N, et al. Efficacy and safety of transdermal medical cannabis
(THC:CBD:CBN formula) to treat painful diabetic peripheral
neuropathy of lower extremities. Med Cannabis Cannabinoids. 2025;8(1):1-14. [CrossRef]
60. Wallace MS, Marcotte TD, Atkinson JH, Padovano HT, BonnMiller M. A secondary analysis from a randomized trial on the
effect of plasma tetrahydrocannabinol levels on pain reduction in painful diabetic peripheral neuropathy. J Pain.
2020;21(11-12):1175-1186. [CrossRef]
61. Jesus CHA, Redivo DDB, Gasparin AT, et al. Cannabidiol
attenuates mechanical allodynia in streptozotocin-induced
diabetic rats via serotonergic system activation through
5-HT1A receptors. Brain Res. 2019;1715:156-164. [CrossRef]
62. Khan I, Kaur S, Rishi AK, Boire B, Aare M, Singh M. Cannabidiol
and beta-caryophyllene combination attenuates diabetic
neuropathy by ınhibiting NLRP3 inflammasome/NFκB
through the AMPK/sirT3/Nrf2 axis. Biomedicines.
2024;12(7):1442. [CrossRef]
63. Türkiye uyuşturucu raporu 2024. Available at: https://www.
narkotik.pol.tr/kurumlar/icisleri.gov.tr/duyurular(1)/2024_u
yus_raporu.pdf. Accessed May 12, 2025.
64. Kenevir Yetiştiriciliği Ve Kontrolü Hakkında Yönetmelik. Available at: https://resmigazete.gov.tr/eskiler/2016/09/20160
929-3.htm. Accessed May 12, 2025.
65. Uyuşturucu Maddelerin Murakabesi Hakkında Kanun. Available at: https://www.mevzuat.gov.tr/MevzuatMetin/1.3.2313
.pdf. Accessed May 12, 2025.